3.1.44 \(\int \frac {(e x)^m (a+b x^n)^p (A+B x^n)}{(c+d x^n)^2} \, dx\) [44]

Optimal. Leaf size=304 \[ \frac {(B c-A d) (e x)^{1+m} \left (a+b x^n\right )^{1+p}}{c (b c-a d) e n \left (c+d x^n\right )}-\frac {(a d (B c (1+m)-A d (1+m-n))+b c (A d (1+m-n (1-p))-B c (1+m+n p))) (e x)^{1+m} \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} F_1\left (\frac {1+m}{n};-p,1;\frac {1+m+n}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )}{c^2 d (b c-a d) e (1+m) n}-\frac {b (B c-A d) (1+m+n p) (e x)^{1+m} \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} \, _2F_1\left (\frac {1+m}{n},-p;\frac {1+m+n}{n};-\frac {b x^n}{a}\right )}{c d (b c-a d) e (1+m) n} \]

[Out]

(-A*d+B*c)*(e*x)^(1+m)*(a+b*x^n)^(1+p)/c/(-a*d+b*c)/e/n/(c+d*x^n)-(a*d*(B*c*(1+m)-A*d*(1+m-n))+b*c*(A*d*(1+m-n
*(1-p))-B*c*(n*p+m+1)))*(e*x)^(1+m)*(a+b*x^n)^p*AppellF1((1+m)/n,-p,1,(1+m+n)/n,-b*x^n/a,-d*x^n/c)/c^2/d/(-a*d
+b*c)/e/(1+m)/n/((1+b*x^n/a)^p)-b*(-A*d+B*c)*(n*p+m+1)*(e*x)^(1+m)*(a+b*x^n)^p*hypergeom([-p, (1+m)/n],[(1+m+n
)/n],-b*x^n/a)/c/d/(-a*d+b*c)/e/(1+m)/n/((1+b*x^n/a)^p)

________________________________________________________________________________________

Rubi [A]
time = 0.35, antiderivative size = 304, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {609, 611, 372, 371, 525, 524} \begin {gather*} -\frac {(e x)^{m+1} \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} (a d (B c (m+1)-A d (m-n+1))+b c (A d (m-n (1-p)+1)-B c (m+n p+1))) F_1\left (\frac {m+1}{n};-p,1;\frac {m+n+1}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )}{c^2 d e (m+1) n (b c-a d)}-\frac {b (e x)^{m+1} (m+n p+1) (B c-A d) \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} \, _2F_1\left (\frac {m+1}{n},-p;\frac {m+n+1}{n};-\frac {b x^n}{a}\right )}{c d e (m+1) n (b c-a d)}+\frac {(e x)^{m+1} (B c-A d) \left (a+b x^n\right )^{p+1}}{c e n (b c-a d) \left (c+d x^n\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((e*x)^m*(a + b*x^n)^p*(A + B*x^n))/(c + d*x^n)^2,x]

[Out]

((B*c - A*d)*(e*x)^(1 + m)*(a + b*x^n)^(1 + p))/(c*(b*c - a*d)*e*n*(c + d*x^n)) - ((a*d*(B*c*(1 + m) - A*d*(1
+ m - n)) + b*c*(A*d*(1 + m - n*(1 - p)) - B*c*(1 + m + n*p)))*(e*x)^(1 + m)*(a + b*x^n)^p*AppellF1[(1 + m)/n,
 -p, 1, (1 + m + n)/n, -((b*x^n)/a), -((d*x^n)/c)])/(c^2*d*(b*c - a*d)*e*(1 + m)*n*(1 + (b*x^n)/a)^p) - (b*(B*
c - A*d)*(1 + m + n*p)*(e*x)^(1 + m)*(a + b*x^n)^p*Hypergeometric2F1[(1 + m)/n, -p, (1 + m + n)/n, -((b*x^n)/a
)])/(c*d*(b*c - a*d)*e*(1 + m)*n*(1 + (b*x^n)/a)^p)

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 372

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^FracPart[p]/
(1 + b*(x^n/a))^FracPart[p]), Int[(c*x)^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 525

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPar
t[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 609

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*g*n*(b*c - a*d)*(p +
 1))), x] + Dist[1/(a*n*(b*c - a*d)*(p + 1)), Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f)
*(m + 1) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, e, f, g, m, n, q}, x] && LtQ[p, -1]

Rule 611

Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n_)))/((c_) + (d_.)*(x_)^(n_)), x_Sy
mbol] :> Int[ExpandIntegrand[(g*x)^m*(a + b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e,
f, g, m, n, p}, x]

Rubi steps

\begin {align*} \int \frac {(e x)^m \left (a+b x^n\right )^p \left (A+B x^n\right )}{\left (c+d x^n\right )^2} \, dx &=\frac {(B c-A d) (e x)^{1+m} \left (a+b x^n\right )^{1+p}}{c (b c-a d) e n \left (c+d x^n\right )}+\frac {\int \frac {(e x)^m \left (a+b x^n\right )^p \left (-a (B c-A d) (1+m)+A (b c-a d) n-b (B c-A d) (1+m+n p) x^n\right )}{c+d x^n} \, dx}{c (b c-a d) n}\\ &=\frac {(B c-A d) (e x)^{1+m} \left (a+b x^n\right )^{1+p}}{c (b c-a d) e n \left (c+d x^n\right )}+\frac {\int \left (-\frac {b (B c-A d) (1+m+n p) (e x)^m \left (a+b x^n\right )^p}{d}+\frac {(d (-a (B c-A d) (1+m)+A (b c-a d) n)+b c (B c-A d) (1+m+n p)) (e x)^m \left (a+b x^n\right )^p}{d \left (c+d x^n\right )}\right ) \, dx}{c (b c-a d) n}\\ &=\frac {(B c-A d) (e x)^{1+m} \left (a+b x^n\right )^{1+p}}{c (b c-a d) e n \left (c+d x^n\right )}-\frac {(b (B c-A d) (1+m+n p)) \int (e x)^m \left (a+b x^n\right )^p \, dx}{c d (b c-a d) n}+\frac {(d (-a (B c-A d) (1+m)+A (b c-a d) n)+b c (B c-A d) (1+m+n p)) \int \frac {(e x)^m \left (a+b x^n\right )^p}{c+d x^n} \, dx}{c d (b c-a d) n}\\ &=\frac {(B c-A d) (e x)^{1+m} \left (a+b x^n\right )^{1+p}}{c (b c-a d) e n \left (c+d x^n\right )}-\frac {\left (b (B c-A d) (1+m+n p) \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p}\right ) \int (e x)^m \left (1+\frac {b x^n}{a}\right )^p \, dx}{c d (b c-a d) n}+\frac {\left ((d (-a (B c-A d) (1+m)+A (b c-a d) n)+b c (B c-A d) (1+m+n p)) \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p}\right ) \int \frac {(e x)^m \left (1+\frac {b x^n}{a}\right )^p}{c+d x^n} \, dx}{c d (b c-a d) n}\\ &=\frac {(B c-A d) (e x)^{1+m} \left (a+b x^n\right )^{1+p}}{c (b c-a d) e n \left (c+d x^n\right )}-\frac {(a d (B c-A d) (1+m)-A d (b c-a d) n-b c (B c-A d) (1+m+n p)) (e x)^{1+m} \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} F_1\left (\frac {1+m}{n};-p,1;\frac {1+m+n}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )}{c^2 d (b c-a d) e (1+m) n}-\frac {b (B c-A d) (1+m+n p) (e x)^{1+m} \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} \, _2F_1\left (\frac {1+m}{n},-p;\frac {1+m+n}{n};-\frac {b x^n}{a}\right )}{c d (b c-a d) e (1+m) n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.27, size = 138, normalized size = 0.45 \begin {gather*} \frac {x (e x)^m \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} \left (A (1+m+n) F_1\left (\frac {1+m}{n};-p,2;\frac {1+m+n}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )+B (1+m) x^n F_1\left (\frac {1+m+n}{n};-p,2;\frac {1+m+2 n}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )\right )}{c^2 (1+m) (1+m+n)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((e*x)^m*(a + b*x^n)^p*(A + B*x^n))/(c + d*x^n)^2,x]

[Out]

(x*(e*x)^m*(a + b*x^n)^p*(A*(1 + m + n)*AppellF1[(1 + m)/n, -p, 2, (1 + m + n)/n, -((b*x^n)/a), -((d*x^n)/c)]
+ B*(1 + m)*x^n*AppellF1[(1 + m + n)/n, -p, 2, (1 + m + 2*n)/n, -((b*x^n)/a), -((d*x^n)/c)]))/(c^2*(1 + m)*(1
+ m + n)*(1 + (b*x^n)/a)^p)

________________________________________________________________________________________

Maple [F]
time = 0.14, size = 0, normalized size = 0.00 \[\int \frac {\left (e x \right )^{m} \left (a +b \,x^{n}\right )^{p} \left (A +B \,x^{n}\right )}{\left (c +d \,x^{n}\right )^{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*(a+b*x^n)^p*(A+B*x^n)/(c+d*x^n)^2,x)

[Out]

int((e*x)^m*(a+b*x^n)^p*(A+B*x^n)/(c+d*x^n)^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(a+b*x^n)^p*(A+B*x^n)/(c+d*x^n)^2,x, algorithm="maxima")

[Out]

integrate((B*x^n + A)*(b*x^n + a)^p*(x*e)^m/(d*x^n + c)^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(a+b*x^n)^p*(A+B*x^n)/(c+d*x^n)^2,x, algorithm="fricas")

[Out]

integral((B*x^n + A)*(b*x^n + a)^p*(x*e)^m/(d^2*x^(2*n) + 2*c*d*x^n + c^2), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: HeuristicGCDFailed} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**m*(a+b*x**n)**p*(A+B*x**n)/(c+d*x**n)**2,x)

[Out]

Exception raised: HeuristicGCDFailed >> no luck

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(a+b*x^n)^p*(A+B*x^n)/(c+d*x^n)^2,x, algorithm="giac")

[Out]

integrate((B*x^n + A)*(b*x^n + a)^p*(x*e)^m/(d*x^n + c)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (e\,x\right )}^m\,\left (A+B\,x^n\right )\,{\left (a+b\,x^n\right )}^p}{{\left (c+d\,x^n\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e*x)^m*(A + B*x^n)*(a + b*x^n)^p)/(c + d*x^n)^2,x)

[Out]

int(((e*x)^m*(A + B*x^n)*(a + b*x^n)^p)/(c + d*x^n)^2, x)

________________________________________________________________________________________